Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport

Identifieur interne : 000169 ( PascalFrancis/Corpus ); précédent : 000168; suivant : 000170

A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport

Auteurs : P. G. Hess

Source :

RBID : Pascal:06-0011506

Descripteurs français

English descriptors

Abstract

Global-scale transport processes are examined in the troposphere using the Model of Ozone and Related Trace Species, version 2 (MOZART-2). Here MOZART-2 is driven by input meteorological fields from the National Center for Environmental Prediction/ National Center for Atmospheric Chemistry (NCEP/NCAR) reanalysis data set during 2001-2002 filtered at approximately 2.8 degrees latitude by 2.8 degrees longitude. Idealized tracers are used to identify deep moist convectively processed airmasses in MOZART-2, where the convection is parameterized using the Zhang and McFarlane scheme. The simulations show that the troposphere can be divided into a convectively processed regime where deep moist convective transport is predominantly responsible for the transport of trace species from the boundary layer and a nonconvectively processed regime. The boundary between the convectively processed and nonconvectively processed regimes lies between approximately 300 and 310 K. The interplay between moist convective and nonconvective transport explains many aspects of the global tropospheric distribution of trace species, including seasonal, latitudinal and longitudinal changes in species distribution. Evidence is presented that transport in the warm conveyor belts of synoptic systems is the process primarily responsible for lofting trace species into the middle and upper troposphere in the nonconvectively processed regime. The Northern Hemisphere (N. H.) midlatitude troposphere undergoes a substantial seasonal cycle in convective influence with much greater convective impact during summer, primarily from convection north of 30°N. There is a barrier to poleward transport in the upper troposphere across 30°, even during the Northern Hemisphere summer. In specific applications the seasonal change in the transport regimes from Asia to North America is examined during the Intercontinental and Chemical Transformation 2002 (ITCT 2K2) campaign and the chemical consequences of convection are explored. An isentropic viewpoint is emphasized in this study. We use this viewpoint to explain the fact that poleward tracer gradients can be explained by transport considerations alone.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 110
A06       @2 D20
A08 01  1  ENG  @1 A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport
A11 01  1    @1 HESS (P. G.)
A14 01      @1 Atmospheric Chemistry Division, National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 1 aut.
A20       @2 D20302.1-D20302.14
A21       @1 2005
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000135086770150
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 59 ref.
A47 01  1    @0 06-0011506
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 Global-scale transport processes are examined in the troposphere using the Model of Ozone and Related Trace Species, version 2 (MOZART-2). Here MOZART-2 is driven by input meteorological fields from the National Center for Environmental Prediction/ National Center for Atmospheric Chemistry (NCEP/NCAR) reanalysis data set during 2001-2002 filtered at approximately 2.8 degrees latitude by 2.8 degrees longitude. Idealized tracers are used to identify deep moist convectively processed airmasses in MOZART-2, where the convection is parameterized using the Zhang and McFarlane scheme. The simulations show that the troposphere can be divided into a convectively processed regime where deep moist convective transport is predominantly responsible for the transport of trace species from the boundary layer and a nonconvectively processed regime. The boundary between the convectively processed and nonconvectively processed regimes lies between approximately 300 and 310 K. The interplay between moist convective and nonconvective transport explains many aspects of the global tropospheric distribution of trace species, including seasonal, latitudinal and longitudinal changes in species distribution. Evidence is presented that transport in the warm conveyor belts of synoptic systems is the process primarily responsible for lofting trace species into the middle and upper troposphere in the nonconvectively processed regime. The Northern Hemisphere (N. H.) midlatitude troposphere undergoes a substantial seasonal cycle in convective influence with much greater convective impact during summer, primarily from convection north of 30°N. There is a barrier to poleward transport in the upper troposphere across 30°, even during the Northern Hemisphere summer. In specific applications the seasonal change in the transport regimes from Asia to North America is examined during the Intercontinental and Chemical Transformation 2002 (ITCT 2K2) campaign and the chemical consequences of convection are explored. An isentropic viewpoint is emphasized in this study. We use this viewpoint to explain the fact that poleward tracer gradients can be explained by transport considerations alone.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  2  FRE  @0 Monde @5 01
C03 01  2  ENG  @0 global @5 01
C03 01  2  SPA  @0 Mundo @5 01
C03 02  2  FRE  @0 Transport @5 02
C03 02  2  ENG  @0 transport @5 02
C03 02  2  SPA  @0 Transporte @5 02
C03 03  X  FRE  @0 Phénomène transport @5 03
C03 03  X  ENG  @0 Transport process @5 03
C03 03  X  SPA  @0 Fenómeno transporte @5 03
C03 04  2  FRE  @0 Troposphère @5 04
C03 04  2  ENG  @0 troposphere @5 04
C03 05  2  FRE  @0 Modèle @5 05
C03 05  2  ENG  @0 models @5 05
C03 05  2  SPA  @0 Modelo @5 05
C03 06  2  FRE  @0 Ozone @5 06
C03 06  2  ENG  @0 ozone @5 06
C03 06  2  SPA  @0 Ozono @5 06
C03 07  X  FRE  @0 Champ météorologique @5 07
C03 07  X  ENG  @0 Meteorological field @5 07
C03 07  X  SPA  @0 Campo meteorológico @5 07
C03 08  2  FRE  @0 Prévision @5 08
C03 08  2  ENG  @0 prediction @5 08
C03 08  2  SPA  @0 Previsión @5 08
C03 09  3  FRE  @0 Chimie atmosphérique @5 09
C03 09  3  ENG  @0 Atmospheric chemistry @5 09
C03 10  2  FRE  @0 Latitude @5 10
C03 10  2  ENG  @0 latitude @5 10
C03 11  2  FRE  @0 Traceur @5 11
C03 11  2  ENG  @0 tracers @5 11
C03 11  2  SPA  @0 Trazador @5 11
C03 12  X  FRE  @0 Masse air @5 12
C03 12  X  ENG  @0 Air mass @5 12
C03 12  X  SPA  @0 Masa aire @5 12
C03 13  2  FRE  @0 Convection @5 13
C03 13  2  ENG  @0 convection @5 13
C03 13  2  SPA  @0 Convección @5 13
C03 14  2  FRE  @0 Simulation @5 14
C03 14  2  ENG  @0 simulation @5 14
C03 14  2  SPA  @0 Simulación @5 14
C03 15  2  FRE  @0 Couche limite @5 15
C03 15  2  ENG  @0 boundary layer @5 15
C03 15  2  SPA  @0 Capa límite @5 15
C03 16  2  FRE  @0 Hémisphère Nord @5 16
C03 16  2  ENG  @0 Northern Hemisphere @5 16
C03 16  2  SPA  @0 Hemisferio norte @5 16
C03 17  X  FRE  @0 Moyenne latitude @5 17
C03 17  X  ENG  @0 Mid latitude @5 17
C03 17  X  SPA  @0 Latitud media @5 17
C03 18  2  FRE  @0 Variation saisonnière @5 18
C03 18  2  ENG  @0 seasonal variations @5 18
C03 18  2  SPA  @0 Variación estacional @5 18
C03 19  X  FRE  @0 Eté @5 19
C03 19  X  ENG  @0 Summer @5 19
C03 19  X  SPA  @0 Verano @5 19
C03 20  2  FRE  @0 Asie @5 20
C03 20  2  ENG  @0 Asia @5 20
C03 20  2  SPA  @0 Asia @5 20
C03 21  2  FRE  @0 Amérique du Nord @5 21
C03 21  2  ENG  @0 North America @5 21
C03 21  2  SPA  @0 America del norte @5 21
C03 22  X  FRE  @0 Transformation chimique @5 22
C03 22  X  ENG  @0 Chemical transformation @5 22
C03 22  X  SPA  @0 Transformación química @5 22
N21       @1 002
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0011506 INIST
ET : A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport
AU : HESS (P. G.)
AF : Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2005; Vol. 110; No. D20; D20302.1-D20302.14; Bibl. 59 ref.
LA : Anglais
EA : Global-scale transport processes are examined in the troposphere using the Model of Ozone and Related Trace Species, version 2 (MOZART-2). Here MOZART-2 is driven by input meteorological fields from the National Center for Environmental Prediction/ National Center for Atmospheric Chemistry (NCEP/NCAR) reanalysis data set during 2001-2002 filtered at approximately 2.8 degrees latitude by 2.8 degrees longitude. Idealized tracers are used to identify deep moist convectively processed airmasses in MOZART-2, where the convection is parameterized using the Zhang and McFarlane scheme. The simulations show that the troposphere can be divided into a convectively processed regime where deep moist convective transport is predominantly responsible for the transport of trace species from the boundary layer and a nonconvectively processed regime. The boundary between the convectively processed and nonconvectively processed regimes lies between approximately 300 and 310 K. The interplay between moist convective and nonconvective transport explains many aspects of the global tropospheric distribution of trace species, including seasonal, latitudinal and longitudinal changes in species distribution. Evidence is presented that transport in the warm conveyor belts of synoptic systems is the process primarily responsible for lofting trace species into the middle and upper troposphere in the nonconvectively processed regime. The Northern Hemisphere (N. H.) midlatitude troposphere undergoes a substantial seasonal cycle in convective influence with much greater convective impact during summer, primarily from convection north of 30°N. There is a barrier to poleward transport in the upper troposphere across 30°, even during the Northern Hemisphere summer. In specific applications the seasonal change in the transport regimes from Asia to North America is examined during the Intercontinental and Chemical Transformation 2002 (ITCT 2K2) campaign and the chemical consequences of convection are explored. An isentropic viewpoint is emphasized in this study. We use this viewpoint to explain the fact that poleward tracer gradients can be explained by transport considerations alone.
CC : 220; 001E; 001E01
FD : Monde; Transport; Phénomène transport; Troposphère; Modèle; Ozone; Champ météorologique; Prévision; Chimie atmosphérique; Latitude; Traceur; Masse air; Convection; Simulation; Couche limite; Hémisphère Nord; Moyenne latitude; Variation saisonnière; Eté; Asie; Amérique du Nord; Transformation chimique
ED : global; transport; Transport process; troposphere; models; ozone; Meteorological field; prediction; Atmospheric chemistry; latitude; tracers; Air mass; convection; simulation; boundary layer; Northern Hemisphere; Mid latitude; seasonal variations; Summer; Asia; North America; Chemical transformation
SD : Mundo; Transporte; Fenómeno transporte; Modelo; Ozono; Campo meteorológico; Previsión; Trazador; Masa aire; Convección; Simulación; Capa límite; Hemisferio norte; Latitud media; Variación estacional; Verano; Asia; America del norte; Transformación química
LO : INIST-3144.354000135086770150
ID : 06-0011506

Links to Exploration step

Pascal:06-0011506

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport</title>
<author>
<name sortKey="Hess, P G" sort="Hess, P G" uniqKey="Hess P" first="P. G." last="Hess">P. G. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0011506</idno>
<date when="2005">2005</date>
<idno type="stanalyst">PASCAL 06-0011506 INIST</idno>
<idno type="RBID">Pascal:06-0011506</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000169</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport</title>
<author>
<name sortKey="Hess, P G" sort="Hess, P G" uniqKey="Hess P" first="P. G." last="Hess">P. G. Hess</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2005">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air mass</term>
<term>Asia</term>
<term>Atmospheric chemistry</term>
<term>Chemical transformation</term>
<term>Meteorological field</term>
<term>Mid latitude</term>
<term>North America</term>
<term>Northern Hemisphere</term>
<term>Summer</term>
<term>Transport process</term>
<term>boundary layer</term>
<term>convection</term>
<term>global</term>
<term>latitude</term>
<term>models</term>
<term>ozone</term>
<term>prediction</term>
<term>seasonal variations</term>
<term>simulation</term>
<term>tracers</term>
<term>transport</term>
<term>troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Monde</term>
<term>Transport</term>
<term>Phénomène transport</term>
<term>Troposphère</term>
<term>Modèle</term>
<term>Ozone</term>
<term>Champ météorologique</term>
<term>Prévision</term>
<term>Chimie atmosphérique</term>
<term>Latitude</term>
<term>Traceur</term>
<term>Masse air</term>
<term>Convection</term>
<term>Simulation</term>
<term>Couche limite</term>
<term>Hémisphère Nord</term>
<term>Moyenne latitude</term>
<term>Variation saisonnière</term>
<term>Eté</term>
<term>Asie</term>
<term>Amérique du Nord</term>
<term>Transformation chimique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Global-scale transport processes are examined in the troposphere using the Model of Ozone and Related Trace Species, version 2 (MOZART-2). Here MOZART-2 is driven by input meteorological fields from the National Center for Environmental Prediction/ National Center for Atmospheric Chemistry (NCEP/NCAR) reanalysis data set during 2001-2002 filtered at approximately 2.8 degrees latitude by 2.8 degrees longitude. Idealized tracers are used to identify deep moist convectively processed airmasses in MOZART-2, where the convection is parameterized using the Zhang and McFarlane scheme. The simulations show that the troposphere can be divided into a convectively processed regime where deep moist convective transport is predominantly responsible for the transport of trace species from the boundary layer and a nonconvectively processed regime. The boundary between the convectively processed and nonconvectively processed regimes lies between approximately 300 and 310 K. The interplay between moist convective and nonconvective transport explains many aspects of the global tropospheric distribution of trace species, including seasonal, latitudinal and longitudinal changes in species distribution. Evidence is presented that transport in the warm conveyor belts of synoptic systems is the process primarily responsible for lofting trace species into the middle and upper troposphere in the nonconvectively processed regime. The Northern Hemisphere (N. H.) midlatitude troposphere undergoes a substantial seasonal cycle in convective influence with much greater convective impact during summer, primarily from convection north of 30°N. There is a barrier to poleward transport in the upper troposphere across 30°, even during the Northern Hemisphere summer. In specific applications the seasonal change in the transport regimes from Asia to North America is examined during the Intercontinental and Chemical Transformation 2002 (ITCT 2K2) campaign and the chemical consequences of convection are explored. An isentropic viewpoint is emphasized in this study. We use this viewpoint to explain the fact that poleward tracer gradients can be explained by transport considerations alone.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>110</s2>
</fA05>
<fA06>
<s2>D20</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HESS (P. G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Atmospheric Chemistry Division, National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s2>D20302.1-D20302.14</s2>
</fA20>
<fA21>
<s1>2005</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000135086770150</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>59 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0011506</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Global-scale transport processes are examined in the troposphere using the Model of Ozone and Related Trace Species, version 2 (MOZART-2). Here MOZART-2 is driven by input meteorological fields from the National Center for Environmental Prediction/ National Center for Atmospheric Chemistry (NCEP/NCAR) reanalysis data set during 2001-2002 filtered at approximately 2.8 degrees latitude by 2.8 degrees longitude. Idealized tracers are used to identify deep moist convectively processed airmasses in MOZART-2, where the convection is parameterized using the Zhang and McFarlane scheme. The simulations show that the troposphere can be divided into a convectively processed regime where deep moist convective transport is predominantly responsible for the transport of trace species from the boundary layer and a nonconvectively processed regime. The boundary between the convectively processed and nonconvectively processed regimes lies between approximately 300 and 310 K. The interplay between moist convective and nonconvective transport explains many aspects of the global tropospheric distribution of trace species, including seasonal, latitudinal and longitudinal changes in species distribution. Evidence is presented that transport in the warm conveyor belts of synoptic systems is the process primarily responsible for lofting trace species into the middle and upper troposphere in the nonconvectively processed regime. The Northern Hemisphere (N. H.) midlatitude troposphere undergoes a substantial seasonal cycle in convective influence with much greater convective impact during summer, primarily from convection north of 30°N. There is a barrier to poleward transport in the upper troposphere across 30°, even during the Northern Hemisphere summer. In specific applications the seasonal change in the transport regimes from Asia to North America is examined during the Intercontinental and Chemical Transformation 2002 (ITCT 2K2) campaign and the chemical consequences of convection are explored. An isentropic viewpoint is emphasized in this study. We use this viewpoint to explain the fact that poleward tracer gradients can be explained by transport considerations alone.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Monde</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>global</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>transport</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Phénomène transport</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Transport process</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Fenómeno transporte</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>models</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>ozone</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Champ météorologique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Meteorological field</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Campo meteorológico</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Prévision</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>prediction</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Previsión</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Chimie atmosphérique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Atmospheric chemistry</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Latitude</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>latitude</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Traceur</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>tracers</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Trazador</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Masse air</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Air mass</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Masa aire</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Convection</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>convection</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Convección</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Simulation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>simulation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Simulación</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="2" l="FRE">
<s0>Couche limite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="ENG">
<s0>boundary layer</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="2" l="SPA">
<s0>Capa límite</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Hémisphère Nord</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>Northern Hemisphere</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Hemisferio norte</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Moyenne latitude</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Mid latitude</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Latitud media</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="2" l="FRE">
<s0>Variation saisonnière</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="ENG">
<s0>seasonal variations</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="2" l="SPA">
<s0>Variación estacional</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Eté</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Summer</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Verano</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Asie</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>Asia</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Asia</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>North America</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="SPA">
<s0>America del norte</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Transformation chimique</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Chemical transformation</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Transformación química</s0>
<s5>22</s5>
</fC03>
<fN21>
<s1>002</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0011506 INIST</NO>
<ET>A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport</ET>
<AU>HESS (P. G.)</AU>
<AF>Atmospheric Chemistry Division, National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (1 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2005; Vol. 110; No. D20; D20302.1-D20302.14; Bibl. 59 ref.</SO>
<LA>Anglais</LA>
<EA>Global-scale transport processes are examined in the troposphere using the Model of Ozone and Related Trace Species, version 2 (MOZART-2). Here MOZART-2 is driven by input meteorological fields from the National Center for Environmental Prediction/ National Center for Atmospheric Chemistry (NCEP/NCAR) reanalysis data set during 2001-2002 filtered at approximately 2.8 degrees latitude by 2.8 degrees longitude. Idealized tracers are used to identify deep moist convectively processed airmasses in MOZART-2, where the convection is parameterized using the Zhang and McFarlane scheme. The simulations show that the troposphere can be divided into a convectively processed regime where deep moist convective transport is predominantly responsible for the transport of trace species from the boundary layer and a nonconvectively processed regime. The boundary between the convectively processed and nonconvectively processed regimes lies between approximately 300 and 310 K. The interplay between moist convective and nonconvective transport explains many aspects of the global tropospheric distribution of trace species, including seasonal, latitudinal and longitudinal changes in species distribution. Evidence is presented that transport in the warm conveyor belts of synoptic systems is the process primarily responsible for lofting trace species into the middle and upper troposphere in the nonconvectively processed regime. The Northern Hemisphere (N. H.) midlatitude troposphere undergoes a substantial seasonal cycle in convective influence with much greater convective impact during summer, primarily from convection north of 30°N. There is a barrier to poleward transport in the upper troposphere across 30°, even during the Northern Hemisphere summer. In specific applications the seasonal change in the transport regimes from Asia to North America is examined during the Intercontinental and Chemical Transformation 2002 (ITCT 2K2) campaign and the chemical consequences of convection are explored. An isentropic viewpoint is emphasized in this study. We use this viewpoint to explain the fact that poleward tracer gradients can be explained by transport considerations alone.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Monde; Transport; Phénomène transport; Troposphère; Modèle; Ozone; Champ météorologique; Prévision; Chimie atmosphérique; Latitude; Traceur; Masse air; Convection; Simulation; Couche limite; Hémisphère Nord; Moyenne latitude; Variation saisonnière; Eté; Asie; Amérique du Nord; Transformation chimique</FD>
<ED>global; transport; Transport process; troposphere; models; ozone; Meteorological field; prediction; Atmospheric chemistry; latitude; tracers; Air mass; convection; simulation; boundary layer; Northern Hemisphere; Mid latitude; seasonal variations; Summer; Asia; North America; Chemical transformation</ED>
<SD>Mundo; Transporte; Fenómeno transporte; Modelo; Ozono; Campo meteorológico; Previsión; Trazador; Masa aire; Convección; Simulación; Capa límite; Hemisferio norte; Latitud media; Variación estacional; Verano; Asia; America del norte; Transformación química</SD>
<LO>INIST-3144.354000135086770150</LO>
<ID>06-0011506</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000169 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000169 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0011506
   |texte=   A comparison of two paradigms : The relative global roles of moist convective versus nonconvective transport
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023